ТЕРМИЧЕСКИЙ И ЛЕДОВЫЙ РЕЖИМ РЕК

Тепловой баланс рек и особенности их температурного режима

Термический режим рек формируется в результате теплообмена между водной массой и окружающей средой (атмосферой), с одной стороны, и ложем русла - с другой. Теплообмен протекает различно при открытой водной поверхности и при ледяном покрове. Составляющими теплообмена с атмосферой при открытой водной поверхности, так же как и в морях (или озерах), являются: поглощение водой прямой и рассеянной солнечной радиации Qo, эффективное излучение Qэф, непосредственный обмен теплом с атмосферой Qт на поверхности соприкосновения ее с водой, затрата тепла на испарение и выделение его при конденсации Qи. При наличии ледяного покрова интенсивность теплообмена между атмосферой и водной массой резко снижается. Лед и выпадающий на него снег уже при толщине 10-20 см практически прекращают доступ к воде лучистой энергии солнца и исключают встречное излучение. Прекращаются конденсация и испарение с водной поверхности. Нарушается турбулентный обмен теплом непосредственно между водной массой и атмосферой. В результате теплообмен осуществляется через толщу ледяного и снежного покрова путем теплопроводности.

Роль теплообмена с ложем русла (Qд) в общем балансе тепла речных вод значительно меньше, чем теплообмена с атмосферой. Летом происходит отдача тепла водной массой ложу реки, зимой поток тепла направлен от дна к воде.

В тепловом балансе речных вод некоторое значение (2-3% суммарного теплообмена равнинных рек) имеет тепло, возникающее внутри потока в результате перехода части энергии, расходуемой на преодоление гидравлических сопротивлений, в тепловую (Qп).

Таким образом, уравнение теплового баланса за время t для бесприточного участка реки при отсутствии ледяного покрова имеет вид

эффективное излучение - Qэф, обмен теплом с атмосферой - Qт, затрата тепла на испарение и выделение его при конденсации - Qи, теплообмен с ложем русла - Qд, преодоление гидравлических сопротивлений - Qп, Qв - поступающее тепло (верхний створ), Qн - тепло, удаляемое вместе с водой (нижний створ).

Роль тепла, приносимого грунтовыми водами, обычно невелика, но может быть для некоторых рек заметной, особенно в зимний период.

Другие элементы теплового баланса (тепло, поступающее с дождевыми осадками, расходуемое на таяние снега в воде, выделяемое при биохимических процессах, затрачиваемое на таяние льда или выделяемое при ледообразовании в переходные периоды года) малы и не всегда учитываются.

Перенос тепла в толщу потока, поступающего на поверхности раздела воды с атмосферой и грунтами, осуществляется главным образом в процессе турбулентного перемешивания, свойственного рекам.

Соотношения между элементами теплового баланса меняются вместе с метеорологическими условиями. В среднем же каждому сезону свойственны определенные соотношения между приходом и расходом тепла, что и обусловливает типические черты температурного режима речных вод.

В годовом цикле температурного режима речных вод отчетливо выделяются два периода: открытой водной поверхности и ледостава. В первом периоде вследствие турбулентности потока и интенсивного перемешивания вся водная масса быстро реагирует на изменение метеорологических условий и ход температуры воды почти параллелен ходу температуры воздуха (отчетливо это проявляется на реках малой водности). В первой половине этого периода, в особенности во время весеннего половодья, температура воды ниже температуры воздуха, а затем, наоборот, температура воды превышает температуру воздуха. Такой ход температуры речных вод свойствен большинству рек нашей страны. Однако в ряде случаев он нарушается, так же как нарушаются и соотношения между температурами воды и воздуха.

На горных реках, питающихся талыми водами вечных снегов и ледников, разности между температурами воды и воздуха остаются отрицательными в течение всего теплого периода. По мере удаления от истока эти разности становятся меньше. При наличии ледяного покрова температура воды в реке остается почти постоянной и близкой к 0° С.

Распределение температуры воды по живому сечению

Турбулентный характер течения воды в реках придает, в общем, однородность (гомотермию) распределению температуры воды по живому сечению. Вместе с тем в различные сезоны существуют некоторые особенности в распределении температуры воды как по ширине, так и по глубине рек. Температуры воды большинства рек в период нагревания в прибрежной части выше, чем на стрежне, в период охлаждения - ниже.

Наибольшие изменения температуры по поперечному профилю (до 8-9° С) происходят под влиянием приточности, если воды притоков теплее или холоднее вод главной реки.

Изменения температуры по глубине выражены значительно слабее и при этом более отчетливо в период нагрева и менее отчетливо в период ох-лаждения. Весной, когда проходит половодье, температура воды с глубиной уменьшается, но различия у поверхности и у дна не превышают 0,5° С. Летом (июль - начало августа) наблюдается прямая стратификация, причем разность температур редко достигает 2-3°С, но иногда и 5°С. В сентябре устанавливается обратная стратификация с разностью температур у поверхности и у дна до 0,6° С. Изменение температуры воды по длине реки

Изменения температуры воды в реках по их длине зависят от условий питания, приточности, особенностей теплового режима и свойств ландшафтных зон, по которым река проносит свои воды.

Почти на всех реках температура от истока повышается на некотором расстоянии вниз по течению. На реках, текущих с юга на север, это повышение прекращается при переходе из лесостепной зоны в лесную. Далее к северу температура воды понижается. Особенно заметно повышение температуры воды в степной и лесостепной зонах, где нагрев речных вод происходит наиболее интенсивно и притоки, протекающие в этих зонах, несут более теплые воды, чем главная река.

На реках, текущих с севера на юг, температура воды непрерывно повышается от истоков к устью, если только река не принимает притоков с более холодной водой. На реках, текущих в широтном направлении, температура воды меняется мало, за исключением верховьев, где температура повышается на некотором расстоянии от истока. Это же явление наблюдается вообще на небольших реках.

На горных реках температура также повышается вниз по течению, но положение границы ее повышения меняется в течение года. Летом повышение температуры происходит на всем протяжении реки до устья; весной и осенью, а на некоторых реках и зимой повышение температуры прекращается при выходе из предгорий.

На температуру воды рек, вытекающих из озер, большое влияние оказывает температура озерных вод, причем чем больше водная масса озера, тем на большее расстояние это влияние распространяется. Так, влияние холодных вод оз. Байкал на температуру воды р. Ангары до зарегулирования ее стока водохранилищами было заметно на расстоянии 1170 км от истока. Далее температура постепенно выравнивалась и почти не отличалась от температуры воды рек района.

Термический режим рек на отдельных участках в значительной степени определяется хозяйственной деятельностью человека. Сброс в реки теплых промышленных и бытовых вод нарушает естественные изменения температуры речных вод.

Фазы ледового режима

В ледовом режиме рек можно выделить три фазы: замерзание - появление первичных форм ледообразования, ледостав со всеми сопутствующими ему явлениями и вскрытие. Не на всех реках наблюдаются все три фазы ледового режима. Их наличие или отсутствие обусловливается климатическими и динамическими причинами и поступлением в русло рек более теплых подземных вод.

Прибрежные участки, отмели, заводи являются первыми очагами ледовых образований. Здесь возникают забереги. Забереги бывают первичные, постоянные и наносные. Первичные забереги возникают в тихие мо-розные ночи; днем при повышении температуры воздуха они обычно исчезают или взламываются волнением. По мере усиления морозов образуются постоянные забереги. Они постепенно растут в ширину и толщину до тех пор, пока не наступит ледостав. На крупных реках во время осеннего ледохода плывущие по реке лед и шуга прибиваются к берегу, примерзают к нему и образуют наносные забереги, обычно с неровной поверхностью.

Одновременно с заберегами, а иногда несколько позже на реках появляется сало (скопления смерзшихся ледяных игл в виде пятен серовато-свинцового цвета).

При обильном выпадении снега на незамерзшую водную поверхность образуется снежура, или снежница, плывущая комковатыми скоплениями, еле возвышающимися над водой, в виде рыхлой несмерзающейся массы.

На многих реках перед началом ледостава образуется внутриводный (глубинный) лед, а на дне - скопления донного льда. Образование донного льда бывает особенно обильным на каменистом дне, на участках с большими скоростями течения. Иногда донный лед скапливается в таком количестве, что образует ледяные плотины.

Одна из весьма распространенных форм ледовых образований на реках, связанных с внутриводным льдом, - шуга. Шугой называется всплывший на поверхность внутриводный лед, в массе которого часто содержится также сало, снежница и мелкобитый лед. Шуга может находиться в состоянии движения - шугоход - или в неподвижном состоянии под ледяным покровом - подледная шуга. Обычно шуга формируется в период, предшествующий ледоставу. Во время ледостава она образуется лишь на участках, свободных от ледяного покрова, где создаются условия, благоприятные для возникновения внутриводного льда. На горных реках явление образования внутриводного льда и шугоход наблюдаются ежегодно и в течение почти всей зимы. На равнинных реках наиболее интенсивное возникновение внутриводного льда происходит на участках с быстрым течением и каменистым дном (на перекатах, порогах). Обилием шуги отличаются мно-гие реки Кольского полуострова, Карелии, реки Свирь, Нева, Ангара и др.

Шуга нередко, в особенности на северных и горных реках нашей страны, забивает живое сечение реки подо льдом, возникают зажоры. Вследствие сужения живого сечения потока возникают резкие подъемы уровня.

На некоторых реках наблюдаются пятры - ледяные острова, покоящиеся на ледяном основании в форме усеченного конуса, малое сечение которого прикреплено ко дну. Конус этот сложен из внутриводного льда.

Осенний ледоход

Плывущие по реке льдины и ледяные поля, сформировавшиеся в результате смерзания обломившихся заберегов, сала, снежуры и шуги, образуют осенний ледоход. Осенний ледоход наблюдается не на всех реках. Отсутствие ледохода характерно для малых рек. На горных реках осенний ледоход заменяется шугоходом.

На больших равнинных реках осенний ледоход наблюдается ежегодно и протекает сравнительно спокойно. На отдельных участках (крутые повороты, сужение русла), где пропускная способность русла не соответствует количеству проходящего по нему ледового материала, происходит скопление плывущих льдин и образуются заторы. Эти скопления льда, так же как и зажоры, оказывают динамическое сопротивление водному потоку и вызывают повышение уровня воды выше по течению. Подъемы уровня воды при осенних заторах относительно невелики (из-за малой водности реки в этот период).

Продолжительность осеннего ледохода колеблется в широких пределах: от нескольких дней до месяца, а иногда и более, и возрастает с увеличением водности реки. На крупных реках, вытекающих из озер (Нева), осенний ледоход принимает затяжной характер в результате тех же процессов, которые охарактеризованы для Ангары. Длительный ледоход свойствен также рекам с неустойчивым ледовым режимом, на которых похолодания сменяются оттепелями, наблюдаются повторные вскрытия и замерзания (Западная Двина, Неман, Днестр и др.).

Распределение сроков начала осеннего ледохода на наших реках носит характер широтной зональности. Раньше всего, во второй половине сентября, осенний ледоход начинается на крайнем севере азиатской части СССР - на реках Таймыра, Индигирки; позже всего наступает в Закавказье - в январе. На крупных реках Сибири наступление осеннего ледохода запаздывает по сравнению со сроками замерзания малых рек данной географической зоны вследствие переноса этими реками больших количеств тепла.

Для характеристики распределения дат начала осеннего ледохода, так же как и других ледовых явлений, строятся карты изохрон - линий, соединяющих на карте пункты с одинаковыми датами наступления этих явлений.

Ледостав

Ледостав - это наличие неподвижного ледяного покрова на поверхности реки (озера).

На всех стадиях ледообразования, от начальных до ледостава включительно, отчетливо проявляется влияние температуры воздуха. По мере перехода от начальных форм ледообразования к ледоставу роль климатических факторов несколько ослабевает и усиливается значение прочих факторов - водности реки, морфологии русла, скоростей течения и т. п. Наибольшее влияние неклиматических факторов сказывается на образовании ледостава. В предледоставный период водная масса охлаждена настолько, что образованию ледостава препятствуют лишь повышенные скорости течения, и тепло, приносимое грунтовыми и озерными водами и водами, сбрасываемыми промышленными предприятиями. На реках, на которых влияние этих факторов ослаблено, ледостав при одинаковых климатических условиях наступает раньше. Малые реки, как правило, замерзают раньше больших, и ледяной покров на них образуется путем срастания заберегов, поэтому он обычно равный и относительно гладкий. На больших реках формирование ледостава связано с возникновением заторов льда, вызывающих подпор и уменьшение скоростей течения. В местах заторов происходит торошение льда, ледяной покров становится неровным, с беспорядочным нагромождением льдин.

Так как заторы возникают далеко не всюду и не в одно время, то ледостав на больших реках равнинных районов образуется не одновременно на различных участках: сначала ледостав образуется на плёсах, затем на перекатах, причем разница в сроках наступления ледостава на различных участках одной и той же реки возрастает с увеличением водности и скоростей течения.

Исследования последних лет показали, что установление ледостава на больших реках на значительном протяжении происходит в результате последовательного перемещения кромки льда вверх по течению от очагов ледяных перемычек. На горных реках ледостав представляет собой сравнительно редкое явление, в особенности в южных районах, как, например, на Кавказе и в Средней Азии. Здесь он формируется на участках, где образуются скопления больших масс шуги.

Большая часть рек нашей страны характеризуется устойчивым ледоставом. Только на реках Черноморского побережья Кавказа и на реках Южного берега Крыма ледостав не наблюдается вовсе вследствие теплого климата. Распределение сроков наступления ледостава на реках СНГ характеризуется в общем широтной зональностью. На европейской части эта зональность несколько нарушается под влиянием вторжений теплых масс воздуха с Атлантики. Ледостав на больших реках Сибири запаздывает по сравнению с малыми реками примерно на 10 дней. В период ледостава на реках иногда сохраняются участки со свободной ото льда водной поверхностью - полыньи, или майны. Полыньи имеют двоякое происхождение: динамические полыньи и термические. Полыньи первой категории возникают на участках сосредоточенного падения - на порогах, стремнинах. Они распространены на реках Карелии, в северной части Русской равнины, на горных и полугорных реках Сибири. Эти полыньи сохраняются иногда в течение всей зимы и являются очагами возникно-вения шуги, скопления которой подо льдом ниже полыньи образуют зажоры.

Полыньи термического происхождения возникают либо под влиянием обильных выходов относительно теплых грунтовых вод или сброса промышленных вод, либо, если река вытекает из озера, вследствие подтока более теплых вод озера. Термические полыньи иногда достигают значительных размеров. Так, например, р. Емца, приток Онеги, не замерзает на протяжении более 100 км, несмотря на суровые зимы. Термические полыньи распространены на реках Яно-Колымской горной страны и Чукотки. В большинстве случаев участки с полыньями на этих реках расположены в области предгорий, которые характеризуются мощными отложениями галечников, изобилующими выходами грунтовых вод в русло реки.

Примером полыней в истоках рек, вытекающих из озер, могут служить полыньи в истоках Невы, Ангары, Волхова и др. В период ледостава на некоторых реках, часто в районах многолетней мерзлоты, на поверхности ледяного покрова образуются наледи - наросты льда в виде напластований, утолщений, бугров, порой причудливой формы.

Зимой в связи с увеличением толщины ледяного покрова или закупоркой русла шугой, промерзанием уменьшается площадь живого сечения. В таких случаях подо льдом образуется напор, взламывающий лед, и через трещины вода выходит на поверхность льда.

Нарастание толщины льда на реках

Ледяной покров изолирует воду от атмосферы в термическом отно-шении и выполняет роль регулятора в теплообмене между водой и воздухом. Если через лед удаляется в воздух больше тепла, чем поступает к нему из воды, то толщина льда увеличивается; в противном случае лед подтаивает. Очевидно, что лед всегда стремится достигнуть такой толщины, при которой создается равновесие между теплом, передаваемым в атмосферу и поступающим из водной массы. Эту регулирующую роль ледяной покров выполняет вместе со снежным покровом, находящимся на нем. Лед значительно лучше проводит тепло, чем снежный покров. Таким образом, основная роль в защите водной массы от потерь тепла принадлежит снегу, лед же служит основанием, на котором покоится снежный покров. Вот почему между толщиной льда и толщиной снежного покрова всегда существует некоторое определенное соотношение: толщины снега hс и льда hл приблизительно пропорциональны друг другу и при плотности снега 0,2 отношение hc/hn равно 0,4. При увеличении толщины снежного покрова это соотношение нарушается, лед погружается в воду, последняя выступает на поверхность льда, смачивает снег, замерзает и в результате толщина льда увеличи-вается настолько, что восстанавливается нормальное соотношение между толщинами снега и льда. В периоды между снегопадами лед приобретает излишнюю плавучесть, и равновесие восстанавливается с увеличением толщины снежного покрова.

Нарастание толщины ледяного покрова большей частью происходит с нижней его поверхности, в слое воды, прилегающем к этой поверхности. Охлаждение этого слоя воды обусловливается отдачей тепла в виде теплового потока, идущего от водной массы через лед в атмосферу. При тепловом равновесии толщина льда не меняется.

Вскрытие рек. Весенний ледоход

Весной с момента перехода температуры воздуха через 0° С начинается таяние снега на льду и берегах реки. На поверхности ледяного покрова появляется вода. Одновременно с действием солнечной радиации и теплых воздушных масс она способствует таянию льда. Ледяной покров теряет прочность. Монолитность строения ледяных масс нарушается, лед приобретает столбчатую структуру и сравнительно легко разламывается под возрастающим напором речного потока.

Прежде всего уменьшается прочность связи ледяного покрова с берегами. Образуются закраины - полосы воды, свободной ото льда. Возникновению закраин способствуют также трещины, появляющиеся у берегов вследствие вспучивания льда при подъеме уровня воды. Оторвавшийся от берега ледяной покров на отдельных участках перемещается на короткие расстояния. Возникают так называемые подвижки льда. Таких подвижек бывает несколько. Местами в ледяном покрове появляются промоины и проталины. При дальнейшем разрушении он разламывается на отдельные поля и льдины. Плывущие по реке ледяные поля и льдины образуют ледоход.

Характер вскрытия рек различен в зависимости от роли в этом процессе тепловых и механических факторов. Если основная роль принадлежит тепловым факторам, а роль механических ничтожна, разрушение и ликвидация ледяного покрова происходят медленнее и спокойно, подобно тому как это бывает на озерах. Такой тип вскрытия присущ рекам, на которых весенний подъем уровней незначителен либо наступает поздно. В этом случае весенний ледоход отсутствует, лед тает на месте.

При возрастании роли механических факторов вскрытие рек может происходить при значительной толщине льда и сопровождается мощным весенним ледоходом и частыми заторами льда. Наиболее ярко эти явления выражены на крупных реках Сибири и севера европейской части СНГ, текущих на север. Здесь вскрытие начинается в верховьях и постепенно перемещается вниз по течению. Волна половодья обгоняет фронт снеготаяния и встречает на своем пути участки реки, еще покрытые толстым и прочным льдом. В этих условиях ледоход начинается при больших подъемах уровня, возрастающих вниз по течению.

Исследования последних лет показывают, что возможны разные случаи формирования весенних заторов льда. В одном случае заторы льда на каком-либо участке обусловливаются в начальной стадии вскрытия главным образом сопротивлением ледяного покрова напору подвижных масс воды и льда, перемещающихся с верхних участков. Увеличение давления со стороны этих масс вызывает местное многослойное нагромождение льдин. Эти явления типичны для рек, текущих на север, для участков с крутыми поворотами, для зоны выклинивания подпора от гидротехнических сооружений и др. В другом случае заторы льда образуются при ледоходе на участках с резкими морфометрическими изменениями русла (уменьшение ширины, многорукавность и т. п.), где ледопропускная способность русла меньше массы льда, поступающей сверху.

К настоящему времени установлено, что ледяной покров к моменту вскрытия оказывается наиболее толстым и прочным в местах с большой осенней зашугованностью. Это создает дополнительные предпосылки к формированию в этих местах мощных заторов. Подобные явления наблюдались на реках Енисее, Иртыше, Северной Двине, Сухоне и др. (рис. 105). Подъемы уровня при весенних заторах нередко превышают максимальные уровни весеннего половодья.

Массы льда, забивающие живое сечение реки порой до 50-80%, испытывают при заторе значительные напряжения, в результате чего возможны надвиги льдин на берега. Торосистые нагромождения льда представляют большую опасность как для береговых сооружений, так и для зимующих вблизи берегов судов. Во время ледохода происходят иногда значительные деформации берегов.

На реках, вытекающих из озер, наблюдается вторичный ледоход, обязанный своим происхождением выносу озерного льда в реку (Нева, Свирь и др.).