Тепловой режим атмосферы

по С.П. Хромову

Причины изменений температуры воздуха

Распределение температуры воздуха в атмосфере и его непрерывные изменения называют тепловым режимом атмосферы. Этот тепловой режим атмосферы, являющийся важнейшей стороной климата, определяется, прежде всего, теплообменом между атмосферным воздухом и окружающей средой. Под окружающей средой при этом понимают космическое пространство и особенно земную поверхность.

Мы уже знаем, что теплообмен осуществляется, во-первых, радиационным путем, т. е. при собственном излечении из воздуха и при поглощении воздухом радиации.

Во-вторых, он осуществляется путем теплопроводности - молекулярной между воздухом и земной поверхностью и турбулентной внутри атмосферы.

В-третьих, передача тепла между земной поверхностью и воздухом может происходить в результате испарения и последующей конденсации или кристаллизации водяного пара.

Кроме того, изменения температуры воздуха могут происходить независимо от теплообмена, адиабатически.

Непосредственное поглощение солнечной радиации в тропосфере мало; оно может вызвать повышение температуры воздуха всего на величину порядка 0,5° в день. Решающее значение для теплового режима атмосферы имеет теплообмен с земной поверхностью путем теплопроводности.

Воздух, непосредственно соприкасающийся с земной поверхностью, обменивается с нею теплом вследствие молекулярной теплопроводности. Но внутри атмосферы действует другая, более эффективная передача тепла - путем турбулентной теплопроводности. Перемешивание воздуха в процессе турбулентности способствует очень быстрой передаче тепла из одних слоев атмосферы в другие. В результате потеря тепла земной поверхностью окажется больше, чем она была бы в отсутствии турбулентности.

Для высоких слоев атмосферы теплообмен с земной поверхностью имеет меньшее значение. Решающая роль в тепловом режиме переходит там к излучению из воздуха и к поглощению радиации Солнца. В высоких слоях атмосферы возрастает и значение адиабатических изменений температуры при восходящих и нисходящих движениях воздуха.

Изменения температуры, происходящие в определенном количестве воздуха вследствие указанных выше процессов, можно назвать индивидуальными. Они характеризуют изменения теплового состояния данного определенного количества воздуха.

Но можно говорить не об индивидуальном количестве воздуха, а о некоторой точке внутри атмосферы с зафиксированными географическими координатами и с неизменной высотой над уровнем моря. Любую метеорологическую станцию, не меняющую своего положения на земной поверхности, можно рассматривать как такую точку. Температура в этой точке будет меняться не только в силу указанных индивидуальных изменений теплового состояния воздуха. Она будет меняться также и вследствие непрерывной смены воздуха в данном месте, т. е. вследствие прихода воздуха из других мест атмосферы, где он имеет другую температуру.

Эти изменения температуры, связанные с адвекцией - с притоком в данное место новых воздушных масс из других частей Земного шара, называют адвективными. Если в данное место притекает воздух с более высокой температурой, говорят об адвекции тепла; если с более низкой, - об адвекции холода.

Общее изменение температуры в зафиксированной географической точке, зависящее и от индивидуальных изменений состояния воздуха, и от адвекции, называют локальным (местным) изменением. Метеорологические приборы - термометры и термографы, неподвижно помещенные в том или ином месте, регистрируют именно локальные изменения температуры воздуха. Термометр на воздушном шаре, летящем по ветру и, следовательно, остающемся в одной и той же массе воздуха, показывает индивидуальное изменение температуры в этой массе.

Тепловой баланс земной поверхности

Остановимся сначала на тепловых условиях земной поверхности и самых верхних слоев почвы и водоемов.

Земная поверхность, т. е. поверхность почвы или воды (а также и растительного, снежного, ледяного покрова), непрерывно разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх - в атмосферу и вниз - в почву или в воду.

Во-первых, на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они в большей или меньшей степени поглощаются поверхностью, т. е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и при этом теряет тепло.

Во-вторых, к земной поверхности приходит тепло сверху, из атмосферы, путем теплопроводности. Тем же способом тепло уходит от земной поверхности в атмосферу. Путем теплопроводности тепло также уходит от земной поверхности вниз, в почву и воду, либо приходит к земной поверхности из глубины почвы и воды.

В-третьих, земная поверхность получает тепло при конденсации на ней водяного пара из воздуха или, напротив, теряет тепло при испарении с нее воды. В первом случае выделяется скрытое тепло, во втором тепло переходит в скрытое состояние.

Не будем касаться некоторых менее важных процессов, например затраты тепла на таяние снега, лежащего на поверхности, или распространения тепла в глубь почвы вместе с водой осадков.

В любой промежуток времени от земной поверхности уходит вверх и вниз в совокупности такое же количество тепла, какое она за это время получает сверху и снизу.

Итак, алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю. Это и выражается уравнением теплового баланса земной поверхности.

Приход тепла из воздуха или отдачу его в воздух путем теплопроводности назовем Р. Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды назовем А. Потерю тепла при испарении или приход его при конденсации на земной поверхности обозначим LE, где L - удельная теплота испарения и Е - масса испарившейся или сконденсировавшейся воды. R - радиационный баланс.

Уравнение теплового баланса земной поверхности напишется так:

R + P + A + LE = 0

Можно еще сказать, что смысл уравнения состоит в том, что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла.

Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Когда передача тепла направлена вниз, то тепло, приходящее к поверхности сверху и уходящее от нее вглубь, в значительной части остается в самом верхнем слое почвы или воды (в так называемом деятельном слое). Температура этого слоя, а стало быть, и температура земной поверхности при этом возрастают. Напротив, при передаче тепла через земную поверхность снизу вверх, в атмосферу, тепло уходит прежде всего из деятельного слоя, вследствие чего температура поверхности падает.

От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем почти столько же тепла, сколько уходит из нее ночью. Но все же за летние сутки тепла уходит вниз несколько больше, чем приходит снизу. Поэтому слои почвы и воды, а стало быть, и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Эти сезонные изменения прихода-расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.

Различия в тепловом режиме почвы и водоемов

Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водных бассейнов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде - также путем турбулентного перемешивания водных слоев, намного более эффективного.

В ночное время суток и в холодное время года к этого рода турбулентности присоединяется еще и термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев.

Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды велика в сравнении с почвой, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы.

В результате суточные колебания температуры в воде распространяются на глубину порядка десятков метров, а в почве - менее чем до одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве - только на 10-20 м.

Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве же приходящее тепло распределяется в тонком верхнем слое, который, таким образом, сильно нагревается.

Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен него приходит накопленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности же почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него уходит без восполнения снизу.

В результате днем и летом температура на поверхности почвы выше, чем температура на поверхности воды; ночью и зимой ниже. Это значит, что суточные и годовые колебания температуры на поверхности почвы больше, притом значительно больше, чем на поверхности воды.

Вследствие указанных различий в распространении тепла водный бассейн за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. Напротив, почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме. Под влиянием снежного покрова зимой и растительного летом годовой теплооборот почвы уменьшается.

Суточный и годовой ход температуры на поверхности почвы

Температура на поверхности почвы имеет суточный ход. Минимум ее наблюдается примерно через полчаса после восхода солнца. К этому времени радиационный баланс поверхности почвы становится равным.

Затем температура на поверхности почвы растет до 13-14 часов, когда достигает максимума в суточном ходе. После этого начинается падение температуры. Радиационный баланс в послеполуденные часы, правда, остается положительным; однако отдача тепла в дневные часы из верхнего слоя почвы в атмосферу происходит не только путем эффективного излучения, но и путем возросшей теплопроводности. Продолжается и передача тепла в глубь почвы.

Суточный ход температуры на поверхности почвы изобразится на графике в виде волнообразной кривой, более или менее напоминающей синусоиду.

Кривая суточного хода в отдельный день может иметь неправильную форму, поскольку она зависит от изменений облачности в течение суток, от осадков, а также и от непериодических (адвективных) изменений температуры воздуха.

Максимальные температуры на поверхности почвы обычно выше, чем в воздухе на высоте метеорологической будки.

В Московской области летом на поверхности обнаженной почвы наблюдаются температуры до +55°, а в пустынях - даже до +80°.

Ночные минимумы температуры, наоборот, бывают на поверхности почвы ниже, чем в воздухе, так как, прежде всего, почва выхолаживается эффективным излучением, а уже от нее охлаждается воздух. Зимой в Московской области ночные температуры на поверхности (в это время покрытой снегом) могут падать ниже -50°, летом (кроме июля) - до нуля. На снежной поверхности во внутренних районах Антарктиды даже средняя месячная температура в июне около -70°, а в отдельных случаях она может падать до -90°.

Разность между суточным максимумом и суточным минимумом температуры называется суточной амплитудой температуры.

В безоблачную погоду суточный (дневной) максимум особенно высок, а суточный (ночной) минимум низок и, следовательно, суточная амплитуда велика. В облачную погоду дневной максимум понижен, ночной минимум повышен и суточная амплитуда уменьшена.

Суточный ход температуры почвы зависит также от экспозиции склонов, т. е. от того, как ориентирован наклон данного участка земной поверхности по отношению к странам света. Ночное излучение одинаково на склонах любой ориентации; но дневное нагревание почвы, конечно, будет наибольшим на южных склонах и наименьшим на северных.

Температура поверхности почвы меняется и в годовом ходе. В тропических широтах ее годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и с широтой растет. В северном полушарии на широте 10° она около 3°, на широте 30° около 10°, на широте 50° в среднем около 25°.

Влияние растительного покрова на температуру поверхности почвы

Растительный покров уменьшает охлаждение почвы ночью. Ночное излучение происходит при этом преимущественно с поверхности самой растительности, которая и будет наиболее охлаждаться. Почва же под растительным покровом сохраняет более высокую температуру. Однако днем растительность препятствует радиационному нагреванию почвы. Суточная амплитуда температуры под растительным покровом, таким образом, уменьшена, а средняя суточная температура понижена. Итак, растительный покров в общем охлаждает почву.

Снежный покров предохраняет почву зимой от чрезмерной потери тепла. Излучение идет с поверхности самого снежного покрова, а почва под ним остается более теплой, чем обнаженная почва. При этом суточная амплитуда температуры на поверхности почвы под снегом резко уменьшается.

Итак, растительный покров летом снижает температуру на поверхности почвы, а снежный покров зимой, напротив, ее повышает. Совместное действие растительного покрова летом и снежного зимой уменьшает годовую амплитуду температуры на поверхности почвы; это уменьшение - порядка 10° в сравнении с обнаженной почвой.

Распространение тепла в глубь почвы

К распространению тепла в почве применима общая теория молекулярной теплопроводности, предложенная в свое время Фурье, и законы распространения тепла в почве носят название законов Фурье. Наблюдения показывают, что фактическое распространение тепла в почве достаточно близко соответствует этим законам.

Чем больше плотность и влажность почвы, тем лучше она проводит тепло, тем быстрее распространяются в глубину и тем глубже проникают колебания температуры. Но, независимо от типа почвы, период колебаний температуры не изменяется с глубиной (первый закон Фурье). Это значит, что не только на поверхности, но и на глубинах остается суточный ход с периодом в 24 часа между каждыми двумя последовательными максимумами или минимумами и годовой ход с периодом в 12 месяцев.

Однако амплитуды колебаний с глубиной уменьшаются. При этом возрастание глубины в арифметической прогрессии приводит к уменьшению амплитуды в прогрессии геометрической (второй закон Фурье). На некоторой сравнительно небольшой глубине суточная амплитуда убывает настолько, что становится практически равной нулю. На этой глубине (около 70-100 см, в разных случаях разной) начинается слой постоянной суточной температуры.

Амплитуда годовых колебаний температуры уменьшается с глубиной по тому же закону. Однако годовые колебания распространяются до большей глубины, что вполне понятно: для их распространения имеется больше времени. Амплитуды годовых колебаний убывают практически до нуля на глубине около 30 м в полярных широтах, около 15-20 м в средних широтах, около 10 м в тропиках.

Сроки наступления максимальных и минимальных температур как в суточном, так и в годовом ходе запаздывают с глубиной пропорционально ей (третий закон Фурье). Это понятно, так как требуется время для распространения тепла в глубину.

Суточные экстремумы на каждые 10 см глубины запаздывают на 2,5-3,5 часа. Это значит, что на глубине, например, 50 см суточный максимум наблюдается уже после полуночи. Годовые максимумы и минимумы запаздывают на 20-30 дней на каждый метр глубины.

Четвертый закон Фурье говорит о том, что глубины слоев постоянной суточной и годовой температуры относятся между собой как корни квадратные из периодов колебаний, т. е. как 1: √ 365. Это значит, что глубина, на которой затухают годовые колебания, в 19 раз больше, чем глубина, на которой затухают суточные колебания. И этот закон, так же, как и остальные законы Фурье, достаточно хорошо подтверждается наблюдениями.

Усложнения вносятся неоднородностью состава и структуры почвы. Кроме того, тепло распространяется в глубь почвы вместе с просачиванием осадков, что, конечно, не подчиняется законам молекулярной теплопередачи.

Изменения температуры в почве с глубиной в течение суток или года можно представить с помощью графика изоплет. По оси абсцисс откладывается время в часах или в месяцах года, а по оси ординат - глубина в почве. Каждой точке на графике соответствуют определенное время и определенная глубина. На график наносят средние значения температуры на разных глубинах в разные часы или месяцы. Проведя затем изолинии, соединяющие точки с равными температурами, например через каждый градус или через каждые 2 градуса, получим семейство термоизоплет. По такому графику можно определить значение температуры для любого момента суток или дня года и для любой глубины в пределах графика.

Суточный и годовой ход температуры на поверхности водоемов и в верхних слоях воды

Выше было сказано об особенностях распространения тепла в водоеме в сравнении с почвой. Основное отличие заключается в том, что тепло в воде распространяется преимущественно путем турбулентности. Поэтому и нагревание, и охлаждение распространяется в водоемах на более толстый слой, чем в почве, и вдобавок обладающий большей теплоемкостью, чем почва. Вследствие этого изменения температуры на поверхности воды очень малы. Амплитуда их - порядка десятых долей градуса: около 0,1-0,2° в умеренных широтах, около 0,5° в тропиках.

Суточные колебания температуры воды на поверхности океана имеют максимум около 15-16 часов и минимум через 2-3 часа после восхода солнца.

Годовая амплитуда колебаний температуры на поверхности океана значительно больше, чем суточная. Но она меньше, чем годовая амплитуда на поверхности почвы. В тропиках она порядка 2-3°, под 40° с. ш. около 10°, а под 40° ю. ш. около 5°.

На внутренних морях и глубоководных озерах возможны значительно большие годовые амплитуды - до 20° и более.

Как суточные, так и годовые колебания распространяются в воде (также, конечно, с запозданием) до больших, глубин, чем в почве. Суточные колебания обнаруживаются в море на глубинах до 15-20 м и более, а годовые - до 150-400 м.

Суточный ход температуры воздуха у земной поверхности

Температура воздуха меняется в суточном ходе вслед за температурой земной поверхности. Поскольку воздух нагревается и охлаждается от земной поверхности, амплитуда суточного хода температуры в метеорологической будке меньше, чем на поверхности почвы, в среднем примерно на одну треть.

Рост температуры воздуха начинается вместе с ростом температуры почвы (минут на 15 позже) утром, после восхода солнца. В 13-14 часов температура почвы, как мы знаем, начинает понижаться. В 14-15 часов она уравнивается с температурой воздуха; с этого времени при дальнейшем падении температуры почвы начинает падать и температура воздуха.

Суточный ход температуры воздуха достаточно правильно проявляется лишь в условиях устойчивой ясной погоды.

Но в отдельные дни суточный ход температуры воздуха может быть очень неправильным. Это зависит от изменений облачности, а также от адвекции.

Суточная амплитуда температуры воздуха меняется еще по сезонам, по широте, а также в зависимости от характера почвы и рельефа местности. Зимой она меньше, чем летом. С увеличением широты суточная амплитуда температуры воздуха убывает, так как убывает полуденная высота солнца над горизонтом. Под широтами 20-30° на суше средняя за год суточная амплитуда температуры около 12°, под широтой 60° около 6°, под широтой 70° только 3°. В самых высоких широтах, где солнце не восходит или не заходит много дней подряд, регулярного суточного хода температуры нет вовсе.

Имеет значение и характер почвы и почвенного покрова. Чем больше суточная амплитуда температуры самой поверхности почвы, тем больше и суточная амплитуда температуры воздуха над нею. Над обильным растительным покровом она меньше.

На выпуклых формах рельефа местности (на вершинах и на склонах гор и холмов) суточная амплитуда температуры воздуха уменьшена в сравнении с равнинной местностью, а в вогнутых формах рельефа (в долинах, оврагах и лощинах) увеличена. Причина заключается в том, что на выпуклых формах рельефа воздух имеет уменьшенную площадь соприкосновения с подстилающей поверхностью и быстро сносится с нее, заменяясь новыми массами воздуха. В вогнутых же формах рельефа воздух сильнее нагревается от поверхности и больше застаивается в дневные часы, а ночью сильнее охлаждается и стекает по склонам вниз.

Изменение суточной амплитуды температуры с высотой

Подобно тому, как в почве или в воде нагревание и охлаждение передаются от поверхности в глубину, так и в воздухе нагревание и охлаждение передаются из нижнего слоя в более высокие слои. Следовательно, суточные колебания температуры должны наблюдаться не только у земной поверхности, но и в высоких слоях атмосферы. При этом, подобно тому как в почве и в воде суточное колебание температуры убывает и запаздывает с глубиной, в атмосфере оно должно убывать и запаздывать с высотой.

Нерадиационная передача тепла в атмосфере происходит, как и в воде, преимущественно путем турбулентной теплопроводности, т. е. при перемешивании воздуха. Но воздух более подвижен, чем вода, и турбулентная теплопроводность в нем значительно больше. В результате суточные колебания температуры в атмосфере распространяются на более мощный слой, чем суточные колебания в океане.

На высоте 300 м над сушей амплитуда суточного хода температуры около 50% амплитуды у земной поверхности, а крайние значения температуры наступают на 1,5-2 часа позже. На высоте 1 км суточная амплитуда температуры над сушей 1-2°, на высоте 2-5 км 0,5-1°, а дневной максимум смещается на вечер. Небольшие суточные колебания температуры обнаруживаются даже в верхней тропосфере и в нижней стратосфере. В горах, где влияние подстилающей поверхности больше, чем на соответствующих высотах в свободной атмосфере, суточная амплитуда убывает с высотой медленнее. На отдельных горных вершинах, на высотах 3000 м и больше, суточная амплитуда еще может равняться 3-4°.

Непериодические изменения температуры воздуха

Во внетропических широтах эти изменения настолько часты и значительны, что суточный ход температуры отчетливо проявляется лишь в периоды относительно устойчивой малооблачной антициклонической погоды. В остальное же время он отступает на задний план перед непериодическими изменениями. Такие изменения могут быть очень интенсивными, особенно похолодания зимой, когда температура в любое время суток может упасть (в континентальных условиях) на 18-20° за время порядка одного часа.

Непериодические изменения температуры связаны главным образом с адвекцией воздушных масс из других районов Земли. Особенно значительные похолодания происходят в умеренных широтах в связи с вторжениями холодных воздушных масс из Арктики и Антарктиды. В Европе сильные зимние похолодания бывают также при проникновении холодных воздушных масс с востока. Холодные воздушные массы иногда проникают в Средиземноморский бассейн и даже достигают Северной Африки. Но чаще они задерживаются перед горными хребтами Европы, расположенными в широтном направлении, особенно перед Альпами и Кавказом. Поэтому климатические условия Средиземноморского бассейна и Закавказья значительно отличаются от условий близких, но более северных районов.

В Азии холодный воздух свободно проникает до горных хребтов, ограничивающих с юга и востока территорию среднеазиатских государств. Но такие горные массивы, как Памир, Тянь-Шань, Алтай, Тибетское нагорье, не говоря уже о Гималаях, являются препятствиями для дальнейшего проникновения холодных воздушных масс к югу. В редких случаях значительные адвективные похолодания наблюдаются, однако, и в Индии. Холодные массы при этом обтекают горные массивы с запада.

В Северной Америке нет горных хребтов, проходящих в широтном направлении. Поэтому холодные массы арктического воздуха могут беспрепятственно распространяться там до Флориды и Мексиканского залива. Над океанами вторжения холодных воздушных масс могут глубоко проникать в тропики. Конечно, при этом холодный воздух прогревается над теплой водой; но все же он может создавать заметные понижения температуры.

Вторжения морского воздуха из средних широт Атлантического океана в Европу создают потепления зимой и похолодания летом. Чем дальше в глубь Евразии, тем меньше становится повторяемость атлантических воздушных масс. Но все же влияние вторжений с Атлантики на климат можно проследить вплоть до Средней Азии.

Тропический воздух вторгается в Европу и зимой, и летом из Северной Африки. Кроме того, летом воздушные массы, близкие по температуре к воздушным массам тропиков и потому также называемые тропическим воздухом, формируются на юге самой Европы или попадают в Европу из Казахстана и Средней Азии. На Азиатской территории России летом наблюдаются вторжения тропического воздуха из Монголии, северного Китая и из южных районов СНГ.

Даже в области северного полюса температура воздуха зимой иногда повышается до нуля в результате адвекции из умеренных широт.

Междусуточная изменчивость температуры

Характеристикой непериодических колебаний температуры в том или ином месте может служить междусуточная изменчивость температуры, т. е. среднее изменение средней суточной температуры воздуха от одних суток к другим.

Если бы не было непериодических изменений, средняя суточная температура день ото дня оставалась бы почти неизменной; точнее, плавно изменялась бы от суток к суткам на очень малую величину. В действительности средняя суточная температура меняется от суток к суткам по-разному, и иногда очень резко, в связи со сменой воздушных масс.

Возьмем абсолютные значения междусуточных изменений температуры за многолетний период, не обращая внимания на знак (т. е. на то, растет ли температура от одних суток к другим или падает), и выведем из них среднюю величину междусуточного изменения. Это и будет междусуточная изменчивость температуры. Наряду с многолетней средней амплитудой суточного хода она является одной из климатических характеристик. Междусуточная изменчивость температуры тем больше, чем чаще и чем сильнее адвективные изменения температуры, происходящие в данной местности.

Междусуточная изменчивость температуры мала в тропиках и возрастает с широтой. В морском климате она меньше, чем в континентальном. Особенно велика междусуточная изменчивость температуры на севере Западной Сибири, а также во внутренних частях Северной Америки. В этих районах в среднем за год она достигает 3,5°. На Европейской территории России она в среднем годовом около 2,5°. При этом зимой она всюду больше, чем летом.

Это говорит о более сильной циклонической деятельности зимой и о более значительных адвективных изменениях температуры, связанных с нею.

Заморозки

Важное в практическом отношении явление заморозков связано как с суточным ходом температуры, так и с непериодическими ее понижениями, причем обе эти причины обычно действуют совместно.

Заморозками называют понижения температуры воздуха ночью до нуля градусов и ниже в то время, когда средние суточные температуры уже держатся выше нуля, т. е. весной и осенью.

Здесь, на высоте 2 м, она может остаться несколько выше нуля; но в самом нижнем, припочвенном слое воздуха она в это же время падает до нуля и ниже, и огородные или ягодные культуры повреждаются. Бывает и так, что температура воздуха даже и на небольшой высоте над почвой остается выше нуля, но сама почва или растения на ней охлаждаются путем излучения до отрицательной температуры и на них появляется иней. Это явление называется заморозком на почве.

Заморозки чаще всего бывают, когда в данный район приходит достаточно холодная воздушная масса, например арктического воздуха. Температура в нижних слоях этой массы днем все-таки выше нуля. Ночью же температура воздуха падает в суточном ходе ниже нуля, т. е. наблюдается заморозок.

Для заморозка нужна ясная и тихая ночь, когда эффективное излучение с поверхности почвы велико, а турбулентность мала и воздух, охлаждающийся от почвы, не переносится в более высокие слои, а подвергается длительному охлаждению. Такая ясная и тихая погода обычно наблюдается во внутренних частях областей высокого атмосферного давления, антициклонов.

Заморозки чаще происходят в низинах, чем в возвышенных местах или на склонах, так как в вогнутых формах рельефа ночное понижение температуры усилено.

Разработаны достаточно эффективные средства для защиты садов и огородов от ночных заморозков. Огород или сад укутывается дымовой завесой, которая понижает эффективное излучение и уменьшает ночное падение температуры.

Годовая амплитуда температуры воздуха

Разность средник месячных температур самого теплого и самого холодного месяца называют годовой амплитудой температуры воздуха. В климатологии рассматриваются годовые амплитуды температуры, вычисленные по многолетним средним месячным температурам.

Годовая амплитуда температуры воздуха прежде всего растет с географической широтой. На экваторе приток солнечной радиации меняется в течение года очень мало; по направлению к полюсу различия в поступлении солнечной радиации между зимой и летом возрастают, а вместе с тем возрастает и годовая амплитуда температуры воздуха. Над океаном, вдали от берегов, это широтное изменение годовой амплитуды, однако, невелико. Если бы Земля была сплошь покрыта океаном, свободным ото льда, то годовая амплитуда температуры воздуха менялась бы от нуля на экваторе до 5-6° на полюсе.

Годовые амплитуды температуры над сушей значительно больше, чем над морем (так же как и суточные амплитуды). Даже над сравнительно небольшими материковыми массивами южного полушария они превышают 15°, а под широтой 60° на материке Азии, в Якутии, они достигают 60°.

С высотой годовая амплитуда температуры убывает. В горах внетропического пояса это убывание в среднем 2° на каждый километр высоты. В свободной атмосфере оно больше. Однако во внетропических широтах значительный годовой ход температуры остается даже в верхней тропосфере и в стратосфере.

Континентальность климата

Климат над морем, прежде всего характеризующийся малыми годовыми амплитудами температуры, естественно назвать морским климатом, в отличие от континентального климата над сушей, с большими годовыми амплитудами температуры. Однако морской климат распространяется и на те прилегающие к морю области материков, где велика повторяемость морских воздушных масс.

Хорошо выражен морской климат в Западной Европе, где круглый год господствует перенос воздуха с Атлантического океана. На крайнем западе Европы годовые амплитуды температуры воздуха равны всего нескольким градусам. С удалением от Атлантического океана в глубь материка годовые амплитуды температуры растут; иначе говоря, растет континентальность климата. В Восточной Сибири годовые амплитуды возрастают до нескольких десятков градусов. Лето здесь более жаркое, чем в Западной Европе, зима гораздо более суровая. Близость Восточной Сибири к Тихому океану не имеет существенного значения, так как, вследствие условий общей циркуляции атмосферы, воздух с этого океана не проникает далеко в Сибирь, особенно зимою. Только на Дальнем Востоке приток воздушных масс с океана летом понижает температуру и тем самым несколько уменьшает годовую амплитуду.

Индексы континентальности

Между морским и континентальным климатом существуют также различия и в суточных амплитудах температуры, в режиме влажности и осадков и пр. Но величина годовой амплитуды температуры все же наиболее ясно отражает континентальность климата.

Однако годовая амплитуда температуры зависит еще и от географической широты. В низких широтах годовые амплитуды температуры уменьшены по сравнению с высокими широтами, даже в континентальных условиях. Следовательно, для более точной числовой характеристики континентальности климата нужно исключить влияние широты на годовую амплитуду температуры.

Для этого был предложен ряд способов, с помощью которых получаются различные индексы (показатели) континентальности климата в функции от годовой амплитуды температуры и от широты места. Особенно известен показатель Л. Горчинского

k = C*(A - 12sinφ)/sinφ

Здесь А - годовая амплитуда температуры, а выражение 12 sinφ определяет среднюю годовую амплитуду температуры над океаном в зоне между 30 и 60° широты. Таким образом, из фактической годовой амплитуды вычитается годовая амплитуда под широтой φ в некотором "среднем океаническом климате". Коэффициент С определяется в предположении, что средняя континентальность над океаном (т. е. при А = 12 sinφ) равна нулю, а для Верхоянска она равна 100.

Типы годового хода температуры воздуха

В зависимости от широты и континентальности можно выделить следующие типы годового хода температуры.

Экваториальный тип. Малая амплитуда, так как различия в поступлении солнечной радиации в течение года невелики, а время наибольшего притока радиации на границу атмосферы совпадает с наибольшей облачностью и дождями. Внутри материков, амплитуда порядка 5°, на побережьях менее 3°, на океанах 1° и менее.

Тропический тип. Амплитуда больше, чем в экваториальном типе: на побережьях порядка 5°, внутри материка 10-15°.

Тип умеренного пояса. В северном полушарии минимум наблюдается над сушей в январе, а над морем - в феврале или марте; максимум над сушей в июле, а над морем - в августе и иногда даже в сентябре. В умеренном поясе можно различать подзоны: субтропическую, собственно умеренную, субполярную.

Полярный тип. Амплитуда на суше (Гренландия, Антарктида) велика - порядка 30-40°.

Возмущения в годовом ходе температуры воздуха

Графически представляя годовой ход температуры мы получаем плавную кривую синусоидального характера. Но если представить годовой ход температуры по средним суточным данным, то и за многолетний период кривая не получится вполне плавной. На ней будут зазубрины, возмущения, обусловленные непериодическими изменениями температуры.

Эти зазубрины или неровности могут наблюдаться от одного календарного дня к другому. Это значит, что непериодические междусуточные изменения температуры не сгладились вполне даже на многолетней кривой. Некоторые возмущения в ходе температуры особенно значительны и распространяются на несколько дней подряд; это может быть, например, падение температуры весной на фоне ее общего роста. Такого рода возмущения можно объяснить тем, что потепления или похолодания повторяются из года в год (хотя и не обязательно каждый год) в некоторые более или менее устойчивые календарные сроки. Поэтому и на климатологической кривой остаются соответствующие возмущения, называемые календарными особенностями.

Осенью, в конце сентября или в начале октября, когда температура вообще падает, наблюдается временное замедление этого падения, а в отдельные годы даже смена его на рост в течение нескольких суток или даже пятидневок. Такие осенние периоды потеплений называются бабьим летом.

Возмущения в годовом ходе температуры говорят о наличии в году таких календарных периодов, когда в данный район преимущественно вторгаются воздушные массы одного определенного типа.

Изотермы. Приведение температуры к уровню моря

Нанесем на географическую карту средние месячные или годовые температуры воздуха, вычисленные по многолетним наблюдениям на отдельных станциях, и соединим точки с одинаковыми температурами линиями равных значений. Мы получим на карте средние изотермы - линии равной температуры воздуха, наглядно показывающие географическое распределение температуры.

Для того чтобы разобраться во влиянии различных географических факторов на приземное распределение температуры воздуха, нужно строить карты изотерм не только для реальной земной поверхности с ее топографическими различиями, но и для уровня моря. Наблюдения на судах можно считать относящимися именно к этому уровню. Но станции на суше расположены на разных высотах над уровнем моря, а известно, что с возрастанием высоты температура воздуха падает.

Исключить влияние высоты можно, приводя температуру к уровню моря, т. е. увеличивая температуру на каждой станции, расположенной выше уровня моря, соответственно высоте станции.

Географическое распределение температуры воздуха у земной поверхности

Рассматривая карты многолетнего среднего распределения температуры воздуха на уровне моря для отдельных календарных месяцев и для всего года, мы обнаруживаем в этом распределении ряд закономерностей, указывающих на влияние географических факторов.

Таково прежде всего влияние широты. Температура в общем убывает от экватора к полюсам в соответствии с распределением радиационного баланса земной поверхности.

Однако изотермы на картах не совпадают вполне с широтными кругами, как и изолинии радиационного баланса. Особенно сильно они отклоняются от зональности в северном полушарии. В этом ясно видно влияние расчленения земной поверхности на сушу и море. Кроме того, возмущения в распределении температуры связаны с наличием снежного или ледяного, покрова, горных хребтов, с теплыми и холодными океаническими течениями.

Год. Зимой материки холоднее океанов, а летом теплее; поэтому в средних годовых величинах противоположные отклонения изотерм от зонального распределения частично взаимно компенсируются. На средней годовой карте мы находим по обе стороны от экватора в тропиках широкую зону, где средние годовые температуры выше +25°. Внутри этой зоны очерчиваются замкнутыми изотермами острова тепла над Северной Африкой и, менее значительные по размерам, над Индией и Мексикой, где средняя годовая температура выше +28°. Над Южной Америкой, Южной Африкой и Австралией изотермы прогибаются к югу, образуя "языки тепла": высокие температуры распространяются здесь дальше в сторону высоких широт, нежели над океанами.

Самые теплые места Земли лежат на побережьях южной части Красного моря (30°-32,5°). Самым холодным районом является Восточная Антарктида, где в центре плато средние годовые температуры порядка -50 - -55°.

Январь. На картах для января над северо-востоком Азии и над Гренландией мы находим даже замкнутые изотермы, обрисовывающие острова холода. В первом районе, между Леной и Индигиркой, средние температуры января достигают -48°, а на уровне местности -50° и ниже, а абсолютные минимумы - даже -70°. Это район якутского полюса холода.

Вторым полюсом холода в северном полушарии является Гренландия. Средняя температура января здесь понижается до -55°, а наинизшие температуры в центре острова доходят, по-видимому, до таких же низких значений, как в Якутии (-70°).

В южном полушарии в январе лето. Над материками в Южной Африке, Южной Америке и особенно в Австралии намечаются хорошо выраженные острова тепла со средними температурами до +34° в Австралии. Максимальные температуры достигают в Австралии +55°.

Июль. В июле в тропиках и субтропиках северного, теперь летнего полушария хорошо выражены острова тепла с замкнутыми изотермами над Северной Африкой, Аравией, Центральной Азией и Мексикой. Средние июльские температуры в Сахаре достигают +40° (на уровне местности несколько ниже). Абсолютные максимумы температуры в Северной Африке доходят до +58° (южнее города Триполи). Немногим ниже, +57°, абсолютный максимум температуры в глубокой впадине среди гор в Калифорнии, в Долине Смерти.

В южном полушарии температура довольно быстро понижается в направлении к Антарктиде. На окраинах материка она достигает -15 - -35°, а в центре Восточной Антарктиды средние температуры близки к -70°. В отдельных случаях наблюдаются температуры ниже -80°, а абсолютный минимум ниже -88° (станция Восток). Это полюс холода всего Земного шара.

Температуры широтных кругов, полушарий и Земли в целом

Для того чтобы лучше ориентироваться в том, как меняется температура воздуха у земной поверхности в зависимости от географической широты, удобно рассматривать средние температуры широтных кругов. Такую температуру легко получить, определив на карте изотерм значения температуры в ряде точек, равномерно распределенных на интересующем нас широтном круге, и получив из них среднюю величину.

В январе средняя температура самая высокая на экваторе: +27°. В июле самой теплой параллелью является 20° с. ш. с температурой +28°. В среднем самая теплая параллель - 10° с. ш. с температурой +27°. Самую теплую параллель называют термическим экватором. Как видно, в течение года термический экватор остается в северном полушарии, перемещаясь от зимы к лету в более высокие широты. Это легко объясняется преобладанием материковых площадей в тропиках северного полушария по сравнению с южным.

Умеренные широты в южном, полушарии зимой теплее, а летом холоднее, чем в северном полушарии. Поэтому годовые амплитуды температуры в умеренных широтах южного полушария значительно меньше, чем в северном полушарии.

По средним температурам широтных кругов можно подсчитать и средние температуры воздуха для целого полушария и для всего Земного шара.

Северное полушарие зимой холоднее, чем южное (в свою зиму), а летом значительно теплее.

Годовая амплитуда температуры для северного полушария 14°, а для южного - только 7°. Следовательно, климат северного полушария в целом более континентальный, чем климат южного полушария.

Средняя температура воздуха у земной поверхности для всего Земного шара в январе +12°, в июле +16° и в среднем годовом +14°. Сильное зимнее охлаждение материков северного полушария (особенно Азии) и такое же сильное летнее их прогревание делают январь для всего Земного шара в целом значительно холоднее июля.

Ускорение конвекции

Конвекция при вертикальных градиентах температуры, близких к адиабатическим, становится упорядоченной - превращается в мощные и значительные по площади поперечного сечения вертикальные токи воздуха, причем скорости восходящих токов могут достигать 10-20 м/сек.

Ускорение вертикально движущейся частицы воздуха - ускорение конвекции зависит от разности абсолютных температур движущегося воздуха и окружающей воздушной среды. При температурах, близких к O°C, и при разности температур = 1° вертикальное ускорение получается около 3 см/сек2.

Стратификация атмосферы и вертикальное равновесие для сухого воздуха

Представим сначала, что мы имеем дело с сухим воздухом (те же выводы действительны и для влажного ненасыщенного воздуха). Сухая воздушная частица, адиабатически охлаждается на 1° на каждые 100 м подъема и нагревается на 1° на каждые 100 м спуска. Если между частицей и окружающим воздухом есть какая-то начальная разность температур, то для сохранения этой разности при движении частицы и, следовательно, для сохранения конвекции необходимо, чтобы в окружающей атмосфере температура менялась по вертикали на ту же величину, т. е. на 1° на каждые 100 м. Иными словами, должен существовать вертикальный градиент температуры, равный сухоадиабатическому градиенту т. е. 1°/100 м. Существующая конвекция при нем сохраняется, но не усиливается с высотою.

Если вертикальный градиент температуры в атмосфере меньше 1°/100, то, какова бы ни была первоначальная разность температур, при движении частицы вверх или вниз она будет уменьшаться. Следовательно, ускорение конвекции будет убывать и в конце концов дойдет до нуля, а вертикальное движение частицы прекратится.

Если вертикальный градиент температуры в атмосфере сверхадиабатический, т. е. больше 1°/100 м, то при вертикальном движении частицы вверх или вниз разность температур этой частицы и окружающего воздуха будет возрастать и ускорение конвекции будет увеличиваться.

Первоначальная разность температур восходящего и окружающего воздуха в первом случае возрастает, во втором - убывает.

Итак, для развития конвекции в сухом или ненасыщенном воздухе нужно, чтобы вертикальные градиенты температуры, в воздушном столбе были больше сухоадиабатического. В этом случае говорят, что атмосфера обладает неустойчивой стратификацией. При вертикальных градиентах температуры меньше сухоадиабатического условия для развития конвекции неблагоприятны. Говорят, что атмосфера обладает устойчивой стратификацией. Наконец, в промежуточном случае, при вертикальном градиенте, равном сухоадиабатическому, существующая конвекция сохраняется, но не усиливается. Говорят, что атмосфера обладает безразличной стратификацией.

Вместо терминов устойчивая, неустойчивая и безразличная стратификация употребляют еще термины устойчивое, неустойчивое и безразличное равновесие. Допустим, что никаких разностей температур по горизонтальному направлению не существует и, следовательно, никакой конвекции нет. Возьмем теперь частицу воздуха на некотором уровне. Предположим, что, приложив какую-то внешнюю силу, мы подняли или опустили эту частицу на какой-то новый уровень, хотя бы и очень близкий к начальному. При безразличной стратификации, т. е. при вертикальном градиенте в атмосферном столбе 1°/100 м, эта частица на любом новом уровне будет иметь ту же температуру, что и окружающий воздух на этом уровне. Следовательно, в новом положении разность температур останется равной нулю и частица останется в равновесии на новом уровне. Этот случай и называется безразличным равновесием по вертикали.

При устойчивой стратификации, т. е. при вертикальном градиенте меньше 1°/100 м, частица, смещенная из первоначального положения, адиабатически охладившись или нагревшись при смещении, станет холоднее окружающего воздуха, если она поднята вверх, и теплее, если она опущена вниз. Поэтому, предоставленная самой себе, частица вернется в начальное положение. В этом случае говорят об устойчивом равновесии по вертикали.

Наконец, при неустойчивой стратификации, т. е. при вертикальном градиенте температуры больше 1°/100 м, смещенная вверх частица окажется теплее, чем окружающий воздух, а смещенная вниз - холоднее. Предоставленная самой себе, она будет продолжать удаляться от начального положения. В этом случае говорят о неустойчивом равновесии по вертикали.

Стратификация атмосферы и вертикальное равновесие для насыщенного воздуха

Все сказанное выше относилось к сухому или к влажному ненасыщенному воздуху. Допустим теперь, что частица воздуха, движущаяся по вертикали вследствие разности температур, насыщена, т. е. содержит водяной пар в состоянии насыщения. Нужно при этом помнить, что частица, движущаяся вниз, может сохранять состояние насыщения только в том случае, если в ней есть жидкие или твердые продукты конденсации - взвешенные капельки или кристаллы. В противном случае адиабатическое повышение температуры при нисходящем движении сразу же ликвидирует состояние насыщения.

Так же как и в случае сухого воздуха, для сохранения конвекции нужно, чтобы первоначальная разность температур не менялась. Но насыщенный воздух адиабатически меняет свою температуру при вертикальном смещении не на 1° на каждые 100 м, а только на несколько десятых долей градуса в зависимости от температуры и давления. Поэтому сохранение разности температур возможно лишь в том случае, если и вертикальный градиент температуры в атмосферном столбе равен влажноадиабатическому градиенту.

Если вертикальные градиенты температуры в атмосфере больше влажноадиабатических для данных значений давления и температуры, то говорят, что стратификация атмосферы неустойчива по отношению к насыщенному воздуху или, короче, что она влажнонеустойчива; для сухого воздуха она при этом может быть устойчивой. При такой стратификации будет возрастать ускорение конвекции и конвекция будет развиваться. При вертикальных градиентах меньше влажноадиабатических имеется стратификация, устойчивая для насыщенного воздуха, т. е. не поддерживающая конвекцию в нем (влажноустойчивая). Наконец, в рассмотренном выше случае, когда вертикальные градиенты в атмосферном столбе в точности равны влажноадиабатическим, стратификация будет безразличной для насыщенного воздуха.

Суточный ход стратификации и конвекции

Итак, конвекция развивается только при неустойчивой стратификации. При этом чем неустойчивее стратификация, т. е. чем больше вертикальные градиенты температуры превышают адиабатические градиенты (сухоадиабатический для ненасыщенного воздуха и влажноадиабатический для насыщенного), тем сильнее развивается конвекция.

Над сушей, в условиях большого суточного хода температуры поверхности почвы (особенно летом), днем нижние слои воздуха сильно прогреваются от поверхности почвы и вертикальные градиенты температур возрастают. В приземном слое они могут стать очень большими, на несколько порядков величины превышая сухоадиабатический градиент. В среднем же в нижних сотнях метров или километрах они приближаются к сухоадиабатическому и, во всяком случае, больше, чем влажноадиабатические градиенты. Стратификация атмосферы становится, таким образом, неустойчивой, и возникает конвекция.

Как неустойчивость стратификации, так и конвекция особенно велики около полудня и в первые послеполуденные часы. Поэтому кучевые облака, ливневые осадки и грозы над сушей, связанные с конвекцией, имеют максимальное развитие именно после полудня. К вечеру стратификация становится устойчивее, а в ночные часы, когда приземный слой воздуха охлаждается от почвы, стратификация может стать даже настолько устойчивой, что развиваются приземные инверсии температуры, т. е. температура воздуха над почвой с высотой не падает, а растет. Понятно, что конвекция в это время суток затихает.

Иными будут условия над морем. Суточный ход температуры на поверхности моря очень мал. Поэтому существенного дневного увеличения неустойчивости над морем не будет; следовательно, не будет и послеполуденного максимума в развитии конвекции. Напротив, в ночные часы неустойчивость стратификации над морем несколько возрастает. Это связано с тем, что у поверхности моря температура ночью остается почти такой же, как и днем, а на высотах в свободной атмосфере температура ночью падает вследствие излучения из воздуха. Поэтому вертикальные градиенты температуры над морем ночью несколько возрастают, а вместе с ними и явления конвекции над морем имеют тенденцию к усилению ночью.

Стратификация воздушных масс

Воздушные массы можно в наиболее общем виде разделить на теплые, холодные и местные. Эти разные типы воздушных масс будут различаться и по условиям стратификации.

Теплая воздушная масса (например, тропический воздух или морской полярный воздух зимой над материком) движется на более холодную подстилающую поверхность (а также часто и в более высокие широты). Она при этом охлаждается снизу. Это охлаждение захватит прежде всего самые нижние слои воздушной массы и лишь постепенно и в ослабленном виде будет распространяться вверх. Следовательно, вертикальные градиенты температуры в нижних слоях воздушной массы будут уменьшаться. В типичной теплой массе, особенно в зимнее время над материком, вертикальные градиенты температуры становятся в нижнем километре порядка 0,2-0,4°/100 м, т. е. меньше влажноадиабатических для данных условий. Иными словами, воздушная масса получает в нижних сотнях метров устойчивую стратификацию - не только сухоустойчивую, но и влажноустойчивую. Можно короче сказать, что теплая воздушная масса по мере своего продвижения на холодную поверхность становится устойчивой массой.

Понятно, что при этом конвекция ослабевает и прекращается. Конденсация водяного пара в устойчивой массе будет происходить в форме туманов и низких слоистых облаков, из которых выпадает морось или, зимой, мелкий снег. Холодная воздушная масса (например, арктический воздух, морской полярный воздух летом над материком) движется на более теплую подстилающую поверхность и поэтому нагревается снизу. Нагревание распространяется вверх путем турбулентности и конвекции быстрее, чем охлаждение; но все-таки особенно нагретыми будут нижние слои, а с высотой нагревание становится слабее. Поэтому в холодной воздушной массе устанавливаются в нескольких нижних километрах большие вертикальные градиенты температуры, превышающие влажноадиабатические: порядка 0,7-0,8°/100 м и более. А это означает, что холодная масса приобретает в этих слоях неустойчивую стратификацию или, короче говоря, становится неустойчивой массой. В такой массе конвекция получает сильное развитие, а конденсация водяного пара происходит в виде кучевых и кучево-дождевых облаков с выпадающими из них ливневыми осадками.

Местные воздушные массы зимой, над охлажденной сушей, становятся устойчивыми, а летом, над нагретой почвой, - неустойчивыми. Поэтому зимой над сушей в умеренных широтах преобладают облака слоистых форм, а летом - кучевые облака.

Инверсии температуры

В предыдущих параграфах мы неоднократно упоминали об инверсиях температуры. Теперь остановимся на них несколько подробнее, поскольку с ними связаны важные особенности в состоянии атмосферы.

Падение температуры с высотой можно считать нормальным положением вещей для тропосферы, а инверсии температуры - отклонениями от нормального состояния. Правда, инверсии температуры в тропосфере - частое, почти повседневное явление. Но они захватывают воздушные слои достаточно тонкие в сравнении со всей толщей тропосферы.

Инверсию температуры можно характеризовать высотой, на которой она наблюдается, толщиной слоя, в котором имеется повышение температуры с высотой, и разностью температур на верхней и нижней границах инверсионного слоя - скачком температуры. В качестве переходного случая между нормальным падением температуры с высотой и инверсией наблюдается еще явление вертикальной изотермии, когда температура в некотором слое с высотой не меняется.

По высоте все тропосферные инверсии можно разделить на инверсии приземные и инверсии в свободной атмосфере.

Приземная инверсия начинается от самой подстилающей поверхности (почвы, снега или льда). У подстилающей поверхности температура самая низкая; с высотой она растет, причем этот рост может распространяться на слой в несколько десятков и даже сотен метров. Затем инверсия сменяется нормальным падением температуры с высотой.

Инверсия в свободной атмосфере наблюдается в некотором слое воздуха, лежащем на той или иной высоте над земной поверхностью. Основание инверсии может находиться на любом уровне в тропосфере; однако наиболее часты инверсии в пределах нижних 2 км. Толщина инверсионного слоя также может быть самой различной - от немногих десятков до многих сотен метров. Наконец, скачок температуры на инверсии, т. е. разность температур на верхней и нижней границах инверсионного слоя, может колебаться от 1° и меньше до 10-15° и больше.

Приземные инверсии

Приземные инверсии температуры над поверхностью суши или над ледяным покровом океана по большей части возникают вследствие ночного радиационного охлаждения подстилающей поверхности. Такие инверсии называют радиационными. Нижние слои воздуха охлаждаются от земной поверхности сильнее вышележащих.

Мощность инверсионного слоя зависит от длительности выхолаживания и от степени турбулентности, передающей охлаждение вверх. Но слишком сильная турбулентность неблагоприятна для образования и сохранения инверсии, так как охлажденный воздух будет ею быстро рассеиваться. Поэтому для образования приземных инверсий особенно благоприятны ясные ночи со слабым ветром. Такие условия погоды характерны для антициклонов и весной и осенью могут привести к ночным заморозкам. Явление заморозков, как правило, связано с образованием приземной инверсии.

С восходом солнца приземная инверсия радиационного типа разрушается, так как ночное охлаждение почвы уступает место прогреванию. Но в холодное время года приземная инверсия может существовать по нескольку суток подряд, ослабевая днем, но усиливаясь от ночи к ночи.

Рельеф местности может усиливать инверсию. Охлаждение воздуха в ясную погоду особенно велико в котловинах, откуда выхоложенный воздух не находит выхода. В Верхоянске зимой даже средняя температура на 10-15° ниже, чем на склонах гор в том же районе на высоте около 900 м.

Меньшая часть приземных инверсий над сушей может возникать и по другим причинам. Так, весной теплый воздух, текущий над снежным покровом, охлаждается, потому что тепло идет на таяние снега. Над поверхностью тающего снежного покрова возникает так называемая снежная, или весенняя, инверсия.

Инверсии в свободной атмосфере

Инверсии в свободной атмосфере возникают преимущественно в устойчивых антициклонах как над сушей, так и над морем и наблюдаются над большими территориями на протяжении длительных периодов. Наиболее часты инверсии в пределах нижних 2 км, но нередко наблюдаются и в более высоких слоях тропосферы.

Большинство инверсий в свободной атмосфере являются инверсиями сжатия, или оседания. Они возникают вследствие нисходящего движения воздуха и его адиабатического нагревания при этом.

Рейтинг@Mail.ru